International University "Dubna" Faculty of Natural and Engineering Sciences Department of Chemistry, Geochemistry and Cosmochemistry

Kholmirzo Kholmurodov

MD-SIMULATION IN CHEMICAL RESEARCH: FROM ATOMIC FRAGMENTS TO MOLECULAR COMPOUND

Discipline: 020100.68 CHEMISTRY

Educational level: MS

The course (semesters): 5th year of study (9-10)

Dubna, 2011

INTRODUCTION

The specialization of "CHEMIST" & the course "MOLECULAR DYNAMICS RESEARCH":

- Computer molecular design of nanostructures;
- Chemical informatics: computer databases on physics-chemistry and ecology-analytical information.

The course "MOLECULAR DYNAMICS RESEARCH" aimed on:

- Simulation and design of chemical nanostructures, systems and compound;
- Computer molecular design of new structures with given (by experiment) parameters and conditions.

The relationship with closest disciplines:

- Computer-medicine chemistry: design of biochemical molecules, ligand-receptor interactions;
- Medicinal chemistry: molecular design of physiologically active compound and preparation;
- Computer methods in "*drug design*";
- Computer design in chemical industry: polymers, liquids;
- Molecular modeling, visualization & virtual screening methods.

The contain of this book:

- Chapter 1: The basic equations, potentials and simulation techniques;
- Chapter 2: The computer code description for simulation of liquid model (Lenard-Jones potential);
- Chapter 3: The use of DL_POLY general-purpose code for the simulation of ionic, polymeric and biochemical molecular systems;
- Chapter 4: The use of quantum-chemistry potentials in MD simulation research;
- Chapter 5: Appendices.

1.1. Status of molecular simulations and biochemical application

Fig. 1. Hydrophobic & hydrophilic interactions during the contact with liquid (water)

Hydrophobic & hydrophilic interactions \rightarrow

Protein folding \rightarrow

Alpha- & beta-helices

Example: prion protein → The mutation effect & unfolding → Diseases (Human form of mad cow disease, Creutzfeld-Jacob Disease (CJD), Fatal Familial Insomnia (FFI) etc.)

Fig. 2. Human prion protein (PrP): ~33-35 kDa, coded by a gen on 20th human chromosome, 254 amino acid residues. Structure: 3 α -helices (H1–H3) & 2 β -sheets (S1–S2). Prion diseases and mutations: CJD – E200K or V210I, FFI – D178N, etc. For the D178N mutation: positive charged residue (Asp) replaces to hydrophilic residue (Asn). For the E200K mutation: negatively charged residue (Glu) replaces to positively charged (Lys). Residue 178 located in helix 2 and is stabilized by hydrogen bonds with Tyr128 (tyrosine) and salt bridge with Arg164 (arginine). Mutation on D178N leads to changes in hydrogen bonding and the lost of salt bridge, thus destabilizing the structure of native (wild-type) prion PrP^C to mutant form PrP^{Sc}. For the PrP^C the structure consists of α -helices (42% of total structure), β -sheets – the only 3% of total structure percentage; it is sensitive to protease. For the PrP^{Sc} the only 30% of structure consists of α -helices, but 43% of β -sheets; it is stable to protease.

1.2. The basic equations and the force field potentials

Molecular dynamics of conventional use is based on II Newton' law:

$$m_{i} \frac{d^{2}r_{i}(t)}{dt^{2}} = F_{i}(\mathbf{r}), \quad i = 1, 2, ..., n$$

$$\{\mathbf{r}_{i}, m_{i}, F_{i}\}$$

$$\mathbf{r} = \{r_{1}, r_{2}, ..., r_{n}\}; \ U(\mathbf{r})$$

$$F_{i}(\mathbf{r}) = -\frac{\partial U(\mathbf{r})}{\partial r_{i}}$$

$$m_i \frac{d^2 \boldsymbol{r}_i(t)}{dt^2} = \boldsymbol{F}_i \left(\boldsymbol{r}_i(t) \right) - \gamma_i m_i \frac{d \boldsymbol{r}_i(t)}{dt} + R_i(t)$$

Fig. 3. Chemical bonds (bond stretching, angle bending, torsion) and non-bonding interaction

$$U(\mathbf{r}) = U_{b} + U_{\theta} + U_{\varphi} + U_{\omega} + U_{LJ} + U_{el} + U_{HB} + \dots$$

(In today computational chemistry and nanotechnological application a lot of potentials have developed, optimized and adapted in general-purpose packages like DL_POLY, AMBER, CHARMM, NAMD, etc.)

Valence length potential,

$$U_{b} = \frac{1}{2} \sum_{b} K_{b} (r - b_{0})^{2}$$

Valence angle potential,

$$U_{\theta} = \frac{1}{2} \sum_{\theta} K_{\theta} \left(\theta - \theta_{0}\right)^{2}$$

Torsion dihedral potential,

$$U_{\varphi} = \frac{1}{2} \sum_{\varphi} K_{\varphi} [\cos(n\varphi - \delta) + 1]$$

Van-der-Waals interaction potential (12-6 or Lennard-Jones (lj)):

$$U_{LJ} = \sum_{i,j} \left[\frac{A}{r_{ij}^{12}} - \frac{B}{r_{ij}^{6}} \right]$$

Electrostatics potential,

$$U_{el} = \sum_{i,j} \frac{q_i q_j}{\varepsilon r_{ij}}$$

Hydrogen bonding potential,

$$U_{HB} = \sum_{i,j} \left[\frac{A'}{r_{ij}^{12}} - \frac{B'}{r_{ij}^{10}} \right]$$

Fig. 4. Graphs of chemical potentials.

Next step of MD, after giving force field potentials, is velocity generation:

$$T(t) = \frac{1}{3Nk_B} \sum_{i=1}^{n} m_i v_i^2 \qquad v_i = \frac{dr_i}{dt}$$

(1) Maxwell velocity distribution;

(2) Random number generators are popular in MC (Monte-Carlo) & MD (Molecular Dynamics).

Maxwell distribution (the averages observable quantities in physics are expressed with):

Fig. 5. Graph of Maxwell velocity distribution depending on temperature.

1.3. Thermostats and barostats

Introducing the friction force as interaction of the simulated molecular system with a heat reservoir:

$$\boldsymbol{Q}_{\alpha} = m_{\alpha} \mu(t) \boldsymbol{v}_{\alpha}$$

The choice of friction coefficient $\mu(t)$ should warrant the energy change law as:

$$\frac{dE}{dt} = \frac{1}{\tau_E} K - E_K(t)$$

E – energy of system (in the absence of a heat exchange with a reservoir to be conserved); t_E – characteristic time of interaction with a heat reservoir (relaxation time, until the external reservoir's temperature is reached; normally is taken from the interval [0.5, 2] ps),

 $E_{K} = \sum_{\alpha=1}^{N} m_{\alpha} (v_{\alpha})^{2}_{-\text{kinetic energy of the system which is giving the temperature } T,$

$$K = \frac{3}{2}Nk_B T_0$$

-a constant, which is corresponds to an average kinetic energy at a heat reservoir's temperature T_{0} .

The equation of motion to be modified as $(\alpha = 1, 2, ..., n)$

$$\frac{d}{dt}\boldsymbol{p}_{\alpha} = -\frac{\partial U}{\partial \boldsymbol{x}_{\alpha}} + \mu(t)m_{\alpha}\boldsymbol{v}_{\alpha}$$

$$m_{\alpha}\frac{d}{dt}\boldsymbol{x}_{\alpha} = \boldsymbol{p}_{\alpha}$$

$$\mu = \frac{1}{2\tau_E} \left(\frac{K}{E_K(t)} - 1 \right)$$

Weak coupling to an external bath \rightarrow

Berendsen thermostat \rightarrow

Nose-Hoover thermostat.

In the Nose-Hoover algorithm the equation of motion with a heat exchanges (dissipation, friction):

$$\frac{dr(t)}{dt} = v(t) \quad \frac{dv(t)}{dt} = \frac{f(t)}{m} - \sigma(t)v(t)$$

$$\Rightarrow \qquad \qquad \Rightarrow \qquad \qquad \Rightarrow \text{(with add. eq. for friction coeff. } \sigma(t) \Rightarrow$$

$$\frac{d\sigma(t)}{dt} = \frac{1}{\tau_T^2} \left(\frac{T}{T_{ext}} - 1\right)$$

Computer realization as discrete finite-difference algebraic equations for the Nose-Hoover thermostat:

$$\sigma\left(t + \frac{1}{2}\Delta t\right) = \sigma\left(t - \frac{1}{2}\Delta t\right) + \frac{\Delta t}{\tau_T^2} \left(\frac{T}{T_{ext}} - 1\right)$$
$$\sigma(t) = \frac{1}{2} \left[\sigma\left(t - \frac{1}{2}\Delta t\right) + \sigma\left(t + \frac{1}{2}\Delta t\right) \right]$$
$$v\left(t + \frac{1}{2}\Delta t\right) = v\left(t - \frac{1}{2}\Delta t\right) + \Delta t \left[\frac{f(t)}{m} - \sigma(t)v(t) \right]$$
$$v(t) = \frac{1}{2} \left[v\left(t - \frac{1}{2}\Delta t\right) + v\left(t + \frac{1}{2}\Delta t\right) \right]$$
$$r(t + \Delta t) = r(t) + \Delta t v\left(t + \frac{1}{2}\Delta t\right)$$

In the Berendsen algorithm the equation of motion with a heat exchanges (dissipation, friction):

$$\sigma = \left[\left[1 + \frac{\Delta t}{\tau_T} \left(\frac{T}{T_{ext}} - 1 \right) \right]^{1/2}$$
$$v \left(t + \frac{1}{2} \Delta t \right) = \left[v \left(t - \frac{1}{2} \Delta t \right) + \Delta t \frac{f(t)}{m} \right] \sigma$$
$$v(t) = \frac{1}{2} \left[v \left(t - \frac{1}{2} \Delta t \right) + v \left(t + \frac{1}{2} \Delta t \right) \right]$$
$$r(t + \Delta t) = r(t) + \Delta t v \left(t + \frac{1}{2} \Delta t \right)$$

1.4. Treating electrostatics - the central problem of the MD simulation

Calculation of potential and forces from the point of computer consuming time:

- (1) Intramolecular interactions, chemical bonds (1-2 Å),
- (2) Nonbonding (Van-der-Waals) forces, intermolecular interactions (short-ranged; 7-8 Å),
- (3) Coulomb electrostatics forces and potentials (long-ranged).

The correct calculation of $N^2 = NxN$ interactions – a central problem of the MD-simulation!

In some cases the electrostatics coud be calculated easily, introducing "cutoff" (Fig. 6).

Fig. 6. Introducing cutoff radius r_{cut} for the force and potential estimation.

Electrostatics potential	Distance dependence	Coulomb force
$U(r_{ij}) = \frac{1}{4\pi\epsilon_0\epsilon(r_{ij})} \frac{q_i q_j}{r_{ij}}$	$\epsilon(r) = \epsilon r$	$\boldsymbol{f}_{j} = \frac{1}{2\pi\epsilon_{0}\epsilon(r_{ij})} \frac{q_{i}q_{j}}{r_{ij}^{4}} \boldsymbol{r}_{ij}$
$U(r_{ij}) = \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}}$	$\boldsymbol{r}_{ij} = \boldsymbol{r}_j - \boldsymbol{r}_i$	$\boldsymbol{f}_j = \frac{1}{2\pi\epsilon_0} \frac{\boldsymbol{q}_i \boldsymbol{q}_j}{r_{ij}^3} \boldsymbol{r}_{ij}$
$U(r_{ij}) = \frac{1}{4\pi\epsilon_0} \left\{ \frac{1}{r_{ij}} - \frac{1}{r_{cut}} \right\}$	$0 < r_{cut} < r_{max}$	$\boldsymbol{f}_j = \frac{1}{2\pi\epsilon_0} \frac{\boldsymbol{q}_i \boldsymbol{q}_j}{r_{ij}^3} \boldsymbol{r}_{ij}$

The Ewald summation for Coulomb interaction is a correct approach taking into account periodicity (Fig.7):

Fig. 7. PBC (periodic boundary conditions) in MD modeling.

In the Ewald summation the electrostatics coulomb potential,

is divided into two sums, -(1) in wave-number space, (2) in real space,

$$\frac{1}{2V_{0}\epsilon_{0}}\sum_{k\neq0}^{\infty}\frac{exp\left(-k^{2}/4\alpha^{2}\right)}{k^{2}}\left|\sum_{j}^{N}q_{j}exp\left(-i\boldsymbol{k}\boldsymbol{r}_{j}\right)\right|^{2}$$
$$\frac{1}{4\pi\epsilon_{0}}\sum_{n\leq j}^{N^{*}}\frac{q_{j}q_{n}}{r_{nj}}erfc(\alpha r_{nj})$$

as well as a correction sums for the intermolecular (chemical bonds) interactions:

$$-\frac{1}{4\pi\epsilon_0}\sum_{molecules}\sum_{l\leq m}^{M^*}q_lq_m\left\{\delta_{lm}\frac{\alpha}{\sqrt{\pi}}+\frac{erf(\alpha r_{lm})}{r_{lm}^{1-\delta_{lm}}}\right\}$$

The Ewald sums are realized under special-purposes architectures, like as MDGRAPE-2 & 3 (Fig. 8).

Fig. 8. A special-purpose computer MDGRAPE (chip and board) for the correct estimation of Ewald sums.

CHAPTER 2. MD SIMULATION OF LENNARD-JONES SYSTEMS

2.1. Lennard-Jones (lj) potential – one of the most popular in liquid simulations

The Lennard-Jones ((lj) or (12-6)) potential looks like (Fig. 9 & Tab. 1):

Fig. 9. The Lennard-Jones potential energy dependence on the atom-atomic distance.

атом	$\epsilon/k_{B}\left(K ight)$	σ (nm)
Н	8.6	0.281
He	10.2	0.228
С	51.2	0.335
Ν	37.3	0.331
0	61.6	0.295
F	52.8	0.283
Ne	47.0	0.272
S	183.0	0.352
Cl	173.5	0.335
Ar	119.8	0.341
Br	257.5	0.354
Kr	164.0	0.383

Table 1. The LJ (Lennard-Jones)-parameters of \mathcal{E} and \mathcal{O} for different atoms.

$$\sigma_{cs} = \frac{\sigma_{cc} + \sigma_{ss}}{2} \quad \varepsilon_{cs} = [\varepsilon_{cc} * \varepsilon_{ss}]^{1/2}$$

The Lorentz-Berthelot mixing rule:

2.2. Computer code for MD simulation of Lennard-Jones system

For MD method FORTRAN + some elements of C yet remains a basic programming language

Even so today a number of high-level algorithmic languages appeared \rightarrow Starting from *C*++ to recent *CUDA*, *OpenCL*, etc.

This is convenient for the adaptation & running under OS Linux \rightarrow Many MD simulation packages are developed at

Table 2a		
<i>ccomputer code for md-simulation of lj-system of 256</i>	5-atoms	
12345x789	73	
program lj-dynamics	Line 1	
<pre>implicit real*8 (a-h,o-z)</pre>	Line 2	
common/xyz/x(256),y(256),z(256)	Line 3	
common/vxvyvz/vx(256),vy(256),vz(256)	Line 4	
common/axayaz/ax(256),ay(256),az(256)	Line 5	
common/fxfyfz/fx(256),fy(256),fz(256)	Line 6	
data fx/256*0.d0/,fy/256*0.d0/,fz/256*0.d0/	Line 7	
cinput parameters		
natom=256	Line 8	
densty=0.9d0	Line 9	
temp=1.5d0	Line 10	
step=0.001d0	Line 11	
fnatom=natom	Line 12	
natom1=natom-1	Line 13	
stepsq=step*step	Line 14	
stepsqh=0.5d0*stepsq	Line 15	
vol=fnatom/densty	Line 16	
$cube=vol^{*}(1.d0/3.d0)$	Line 17	
cubeh=0.5d0*cube	Line 18	

Line 1: title " lj-dynamics ".

Line 2: double-precision option for all commands starting with (a-h,o-z). Duble-precision numbers 3.1415926535d+0, -4.78d+6, 1.0d+0 (to 15 numbers). "Pi"=3.1415926535, if single-precision, 3.141593.

Line 3 - Line 7: massive 3-D (x, y, z), (v_x, v_y, v_z) , (a_x, a_y, a_z) & (f_x, f_y, f_z) . Line 8 - Line 18: dimensionless t/t^* parameters are obtained via the LJ-parameters: $\sqrt{\frac{m}{\epsilon}} = t^*$ characteristic time). The estimation of order of t^* for atom argon (Ar): $m = 6,63 \times 10^{-24} \text{ g}$ – mass argon atom, $\frac{\epsilon}{k} = 120 \text{ K}$, $k = 1,38 \times 10^{-16} \text{ erg/K}$ – Boltzmann' constant, $\sigma = 0,341 \times 10^{-9} \text{ m}$ (Tab. 1).

Thus $t^* = 0.68 \times 10^{-15} \text{s} = 0.68 \text{ fs} - \text{characteristic time of events in molecular dynamics}$

 $(r/\sigma = r^* \downarrow L/\sigma = L^* \downarrow (N/\rho^*)^{1/3} \downarrow V/\sigma^3 = V^* \downarrow (N/\rho^*) \downarrow N\sigma^3/V = \rho^*_{-\text{dimensionless}}$ density, $kT/\varepsilon = T^*_{-\text{temperature}} P\sigma^3/\varepsilon = P^*_{-\text{pressure, etc}}.$

Fig. 10. Generation of fcc lattice of the LJ system of 256 particles.

Table 2b		
cgeneration of cubic crystal «fcc-lattice»		
12345x789	73	
nunit=(fnatom/4.)**(1./3.)+0.1	Line 1	
51 ncheck=4*(nunit**3)	Line 2	
if(ncheck.lt.natom) then	Line 3	
nunit=nunit+1	Line 4	
goto 51	Line 5	
endif	Line 6	
dist=0.5d0*cube/dfloat(nunit)	Line 7	
x(1)=0.d0	Line 8	
y(1)=0.d0	Line 9	
z(1)=0.d0	Line 10	
x(2)=0.d0	Line 11	
y(2)=dist	Line 12	
z(2)=dist	Line 13	
x(3)=dist	Line 14	
y(3)=0.d0	Line 15	
z(3)=dist	Line 16	
x(4)=dist	Line 17	
y(4)=dist	Line 18	
z(4)=0.d0	Line 19	
m=0	Line 20	
kct=0	Line 21	
do 12 i=1,nunit	Line 22	
do 12 j=1,nunit	Line 23	
do 12 k=1,nunit	Line 24	
do 10 ij=1,4	Line 25	
if(kct.lt.natom) then	Line 26	
x(ij+m)=x(ij)+2.d0*dist*(k-1)	Line 27	
y(ij+m)=y(ij)+2.d0*dist*(j-1)	Line 28	
z(ij+m)=z(ij)+2.d0*dist*(i-1)	Line 29	
endif	Line 30	
kct=kct+1	Line 31	
10 continue	Line 32	
m=m+4	Line 33	
12 continue	Line 34	

Table 2b

Table 2c			
cgeneration of initial velocities by random numb	per generator		
12345x789			
mseed=-30509	Line 1		
do 100 i=1,natom	Line 2		
vx(i)=roulet(mseed)	Line 3		
vy(i)=roulet(mseed)	Line 4		
vz(i)=roulet(mseed)	Line 5		
100 continue	Line 6		
velsq=0.d0	Line 7		
do 120 i=1,natom	Line 8		
velsq=velsq+vx(i)**2+vy(i)**2+vz(i)**2	Line 9		
120 continue	Line 10		
aheat=3.d0*fnatom*stepsq*temp	Line 11		
factor=dsqrt(aheat/velsq)	Line 12		
do 600 i=1,natom	Line 13		
vx(i)=vx(i)*factor	Line 14		
vy(i)=vy(i)*factor	Line 15		
vz(i)=vz(i)*factor	Line 16		
600 continue	Line 17		

Line 2 – Line 6: (v_x, v_y, v_z) in the interval [-1, +1].

Line 11 – Line 17: factorization of the particle velocities to a temperature given by user:

$$v_i^{new} = v_i^{old} \sqrt{\frac{3NT}{\sum_{i=1,N} (v_x^2 + v_y^2 + v_z^2)}}$$

Tal	hle	2d
_ 1 a	JIC	4 u

cgeneration of dynamics; search for an equilibrium state			
12345x789	73		
maxeq=5000	Line 1		
do 5 ktime=1,maxeq	Line 2		
do 300 i=1,natom1	Line 3		
xi=x(i)	Line 4		
yi=y(i)	Line 5		
zi=z(i)	Line 6		
do 400 j=i+1,natom	Line 7		
xij=xi-x(j)	Line 8		
yij=yi-y(j)	Line 9		
zij=zi-z(j)	Line 10		
if(xij.ltcubeh) xij=xij+cube	Line 11		
if(xij.gt. cubeh) xij=xij-cube	Line 12		
if(yij.ltcubeh) yij=yij+cube	Line 13		
if(yij.gt. cubeh) yij=yij-cube	Line 14		
if(zij.ltcubeh) zij=zij+cube	Line 15		
if(zij.gt. cubeh) zij=zij-cube	Line 16		
	T ' 10		
rsq=x1j*x1j+y1j*y1j+z1j*z1j	Line I/		
rıj=asqrt(rsq)	Line 18		
rsginy=1_d0/rsg	Iine 19		
r6inv=rsainv*rsainv	Line 20		
enr=4 d0*r6inv*(r6inv-1 d0)	Line 21		
for=rsginv*48 d0*r6inv*(r6inv-0.5d0)	Line 22		
fx(i)=fx(i)+for*xij	Line 23		
fx(j)=fx(j)-for*xij	Line 24		
fy(i)=fy(i)+for*yij	Line 25		
fy(j)=fy(j)-for*yij	Line 26		
fz(i)=fz(i)+for*zij	Line 27		
fz(j)=fz(j)-for*zij	Line 28		
energy=energy+enr	Line 29		
400 continue	Line 30		
300 continue	Line 31		

Line 3 – Line 10:

 $\boldsymbol{F}_{ij} = -\boldsymbol{F}_{ji}, \quad \left|\boldsymbol{F}_{ij}\right| = \left|\boldsymbol{F}_{ji}\right|$

"Interaction triangular"

Fig. 11. "Interaction triangular" for the pair index "i" & "j" of interacting particles.

Line 11 – Line 16: The "*i*" & "*j*" index in a periodic cell (Fig. 12).

Fig. 12. The atomic index "1" interacts with "2" – instead of "2" its periodic image "2" to be used.

Line 17 – Line 18: $R_{ij} = R_i - R_j$ –calculations under PBC. Line 19 – Line 20: $R_{ij}^2 / R_{ij}^2 / R_{ij}^6$ -calculations and LJ-potential estimation. Line 21 – Line 22: LJ-potential and force:

$$u(r) = 4\varepsilon[(\sigma/r)^{12} - (\sigma/r)^6]$$

$$F(r) = -du(r)/dr$$

$$F(r) = 48(\varepsilon/\sigma)[(\sigma/r)^{13} - 0.5(\sigma/r)^7]$$

$$F\sigma/\varepsilon = F^*$$

Line 23 – Line 29: III Newton' law check:

$$\boldsymbol{F}_{ij} = -\boldsymbol{F}_{ji} \quad \left| \boldsymbol{F}_{ij} \right| = \left| \boldsymbol{F}_{ji} \right|$$

Table 2e		
cgeneration of new accelerations and velocities		
12345x789		
cnew particle accelerations		
do 350 i=1,natom	Line 1	
ax(i)=fx(i)*stpsqh	Line 2	
ay(i)=fy(i)*stpsqh	Line 3	
az(i)=fz(i)*stpsqh	Line 4	
350 continue	Line 5	
cnew particle velocities		
do 351 i=1,natom	Line 6	
vx(i)=vx(i)+2.d0*ax(i)	Line 7	
vy(i)=vy(i)+2.d0*ay(i)	Line 8	
vz(i)=vz(i)+2.d0*az(i)	Line 9	
351 continue	Line 10	

 $\upsilon\left(t+\frac{1}{2}\Delta t\right)=\upsilon\left(t-\frac{1}{2}\Delta t\right)+\Delta t\frac{f(t)}{m}$

Line 6 – Line 10:calculations of new velocities:

Table 2f		
cgeneration of new atomic positions; results print	output	
12345x789	73	
cnew particle coordinates		
do 200 i=1,natom	Line 1	
x(i)=x(i)+vx(i)+ax(i)	Line 2	
y(i)=y(i)+vy(i)+ay(i)	Line 3	
z(i)=z(i)+vz(i)+az(i)	Line 4	
if(x(i).lt.0.d0) then	Line 5	
x(i) = x(i) + cube	Line 6	
elseif(x(i).gt.cube) then	Line 7	
x(i) = x(i) - cube	Line 8	
endif	Line 9	
if(y(i).lt.0.d0) then	Line 10	
y(i) = y(i) + cube	Line 11	
elseif(y(i).gt.cube) then	Line 12	
y(i)=y(i)-cube	Line 13	
endif	Line 14	
if(z(i).lt.0.d0) then	Line 15	
z(i)=z(i)+cube	Line 16	
elseif(z(i).gt.cube) then	Line 17	
z(i)=z(i)-cube	Line 18	
endif	Line 19	
200 continue	Line 20	
ceach 5 timestep to printout all particle coordinat	es - l ol	
kstep=5	Line 21	
if (ktime/kstep) *kstep.eq.ktime) then	Line 22	
aprint=prnt(ktime, natom)	Line 23	
endif	Line 24	
czero forces to restart		
do i=1 natom	Iine 25	
$f_{x}(i) = 0 d0$	Line 26	
$f_{x}(i) = 0.00$	= 20	
$f_{2}(i) = 0$ d0	Line 28	
12(1) - 0.00	Line 20	
enado	TTUE 72	

```
c----end of time cycle

5 continue ---Line 30

write(*,*)'dynamics successfully ended' ---Line 31

stop end ---Line 32

---Line 33
```

Line 2 – Line 4: new atomic coordinates calculated through the Teylor series in dimensionless form:

$$\mathbf{r}_{i}(t + \Delta t) = \mathbf{r}_{i}(t) + \mathbf{r}_{i}'(t)\Delta t + \mathbf{r}_{i}''(t)\frac{(\Delta t)^{2}}{2!} + \mathbf{r}_{i}'''(t)\frac{(\Delta t)^{3}}{3!} + \cdots$$

Line 5 – Line 19: PBC (periodic boundary conditions) check

Fig. 13. PBC (periodic boundary conditions).

calgorithm of random number generation in th	he interval of [-1,+1]
12345x789	
ca random number generator subroutine	
function roulet(iseed)	Line 1
implicit real*8 (a-h,o-z)	Line 2
common/rand/rr(97)	Line 3
data m1,ia1,ic1/31104,625,6571/	Line 4
data m2,ia2,ic2/12960,1741,2731/	Line 5
data m3,ia3,ic3/14000,1541,2957/	Line 6
rm1=1./m1	Line 7
rm2=1./m2	Line 8
if(iseed.lt.0) then	Line 9
<pre>ix1=mod(ic1-iseed,m1)</pre>	Line 10
<pre>ix1=mod(ia1*ix1+ic1,m1))</pre>	Line 11
<pre>ix2=mod(ix1,m2))</pre>	Line 12
<pre>ix1=mod(ia1*ix1+ic1,m1)</pre>	Line 13
ix3=mod(ix1,m3)	Line 14
do 11 j=1,97	Line 15
<pre>ix1=mod(ia1*ix1+ic1,im1)</pre>	Line 16
<pre>ix2=mod(ia2*ix2+ic2,m2)</pre>	Line 17
<pre>rr(j)=(float(ix1)+float(ix2)*rm2)*rm1</pre>	Line 18
11 continue	Line 19
iseed=1	Line 20
endif	Line 21
<pre>ix3=mod(ia3*ix3+ic3,m3)</pre>	Line 22
j=1+(97*ix3)/m3	Line 23
if(j.gt.97.or.j.lt.1) write(6,99)	Line 24
99 format(//5X, 'array size for rr violated'/)	Line 25
roulet=2.*rr(j)-1.	Line 26
<pre>ix1=mod(ia1*ix1+ic1,m1)</pre>	Line 27
<pre>ix2=mod(ia2*ix2+ic2,m2)</pre>	Line 28
<pre>rr(j)=(float(ix1)+float(ix2)*rm2)*rm1</pre>	Line 29
return	Line 30
end	Line 31

Table	2i

coutput print in formats of «dlpoly» & «pdb»		
12345x789	•••••	73
csubroutine for printout of particle positions		
function prnt(ktime, n)	Line	1
implicit real*8 (a-h,o-z)	Line	2
common/xyz/x(256), y(256), z(256)	Line	3
character*8 aname, timestep	Line	4
character*4 ATOM, TER, an	Line	5
an='lj'	Line	6
aname='history'	Line	7
caname='filePDB'		
CATOM='ATOM'		
CTER='TER'		
C		
open(unit=11.file=aname.form='formatted')	Line	8
	22110	0
timestep='timestep'	Line	9
alx=9.0	Line	10
b v = 9	Line	11
C = 2	Line	12
itsten=5	Line	13
write $(11, 1, (a8, 4i10, f12, 6)!)$ 'timesten=', itsten	Line	14
x 108.0.1.0 001	Line	15
write(11 + (3a12 + 4)) alv = 0	Line	16
write(11, (3g12, 4)) arr, 0., 0.	Line	17
write(11, (3g12, 4)) 0, 0 g1z	Line	18
wiite(ii, (3912.4))0.,0.,012	ПТПС	10
do i=1 n	Line	19
	Iino	20
μ_{11}	Line	20
write $(11, (a0, 110, 2112, 0))$ an, $11, 25, 0$.	Line	21
while (ii, (ip, Sei2.4)) $A(11)$, $y(11)$, $Z(11)$	~ ;;	22
$C^{}$ (ii) (a4,17,18,a4,18,17,08,510.5) Alom,11,a	$(1, \pm \pm)$	
	2(11) ino	^ 2
$e \Pi d d o$	TIU6	23
Cwille (11, (a4))IER		
roturn		24
	Tine	24 25
ena	riue	20

2.3. Monitoring of equilibrium states in the MD simulation

Comments on "Calculation Triangle":

Fig. 14. "Calculation Triangle" – dependence of computing time t & number of atoms N.

I. RDF (radial distribution function)

$$\rho g(\boldsymbol{r}) = \frac{1}{N} < \sum_{i}^{N} \sum_{j \neq i}^{N} \delta\left[\boldsymbol{r} - \boldsymbol{r}_{ij}\right] >$$

N- total number of atoms, $\rho = N/V_{-}$ atomic density, r_{ij} - radius-vector between two centers i & j, $(...)_{-}$ time average; for distance less than one atomic diameter $g(r) = 0_{, \text{ for larger distances}} g(r) = 1_{.}$

For LJ-system the RDF has a different behavior depending on the phase state:

Fig. 15. The RDF for the gases (top), liquids (middle) and solids (bottom).

II. Order parameter

Function-parameter γ is widely used for distinguishing of the equilibrium states:

$$\gamma_x = \frac{1}{N} \sum \cos(4\pi x_i/a)$$

$$\gamma_y = \frac{1}{N} \sum \cos(4\pi y_i/a)$$

$$\gamma_z = \frac{1}{N} \sum \cos(4\pi z_i/a)$$

$$\gamma = \frac{1}{3} [[\gamma_x + \gamma_y + \gamma_z]]$$

Fig. 16. The order parameter γ dependence on the atomic collision number.

$$H_x(t) = \int_{-\infty}^{+\infty} f(v_x) \ln f(v_x) \, dv_x$$

Fig. 17. The behavior of Boltzmann' H-function depending on the atomic number collisions.

2.4. Dynamical properties: diffusion coefficient

A general law: Flux = – Coefficient x Gradient

Examples: Newton's law of viscosity; Fick's law of diffusion; Fourier's law of heat conduction; Ohm's law of electrical conduction.

 $\begin{cases} n\frac{\partial x}{\partial t} = -D\frac{\partial n}{\partial x}\\ \frac{\partial n}{\partial t} + \frac{\partial (n\dot{x})}{\partial x} = 0 \end{cases}$

The system of two equations – diffusion and material balance:

$$\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2} \qquad \rightarrow \qquad n(x,t) = \frac{N}{2(\pi D t)^{1/2}} e^{-\frac{x^2}{4Dt}}$$

The relationship between the Gauss distribution & MSD (mean-square displacement):

$$\langle [x(t) - x(0)]^2 \rangle = \frac{1}{N} \int x^2 n(x, t) dx$$

(for 3-D motion)
$$\lim_{t \to \infty} \frac{\langle [x(t) - x(0)]^2 \rangle}{6t} = D$$

The Einstein equation & fluctuation-dissipation equations (Onsager):

$$D = \frac{1}{6N} \lim_{t \to \infty} \frac{d}{dt} \sum_{i=1}^{N} [r_i(t) - r_i(0)]^2 \qquad D = \frac{1}{6} \lim_{t \to \infty} \frac{d}{dt} (MSD)$$

CKO(MSD) = $\langle r^2(t) \rangle = \langle \frac{1}{N} \sum_{i=1}^{N} [r_i(t) - r_i(0)]^2 \rangle \quad \langle r^2(t) \rangle = 2dDt \quad d = 1,2,3$

The RMSD (root-mean-square displacement):

$$\text{KCKO}(RMSD) = \sqrt{\frac{1}{M} \sum_{i}^{N} m_{i} \|r_{i,1} - r_{i,2}\|^{2}}$$
$$r_{i,1}(r_{i,2}) - \text{atomic positions at } t=0 \text{ (t>0), } \|r_{i,1} - r_{i,2}\|^{2} = |r_{i,1} - r_{i,2}|^{2}.$$

Figs. 18(a-b). The ballistic & diffusion regimes for the LJ (Lennard-Jones) model.

Fig. 19(a-d). Sequential snapshots of the Lennard-Jones model configurations: (a)t=0, (b)t=1, (c)t=10, (d)t=100ps.

Fig. 20. (top)Monitoring of thermodyn. Quantities T, P, E – temperature, pressure, total energy; (bottom)RDF vs. distance.

2.6. Dynamical and diffusion properties of NaCl in water solvent at different salt` concentrations

Ref: By Anna Shurenkova and Polina Kolodina (5th year students of 2009-2010)

Atom	Mass number (m _e , a.m.u.)	Charge number q (e , proton charge)
Na	22.98980	1.00000
Cl	35.45300	-1.00000
Ow	15.99940	-0.73000
Hw	1.00797	0.36500
Hw	1.00797	0.36500

Tab. 3(a). Masses and charges in the system of NaCl-H2O.

Tab. 3(b). Potential parameters for the interacting atomic pairs.

Atomic pair	Potential	Functional form	Parameters	ε, kcal/mol	σ, Å
Ow-Ow	LJ			0.160	3.2
Na-Na			ε,σ	0.130	2.3
Cl-Cl		$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$		0.100	4.5
Ow-Na				0.144	2.8
Ow-Cl				0.127	3.8
Na-Cl				0.114	3.400

Dynamics at NVT ensemble.

(294.95 K; cell size 5721,581 Å³; total number of molecules 140).

(a)

(b)

Fig. 21(a-c). Monitoring of thermodynamical quantities, *T*, *E*, *P* – temperature, total energy and pressure in time.

(b)

(c)

(**d**)

Fig. 22. (*a-c*)*The density, pressure and total energy dependences on the salt concentration in the solution.* (*d*)*Dependence of osmotic coefficient on concentration (experimental data; reference book).*

Diffusion coefficient.

Fig. 23. Dependence of diffusion coefficient on concentration.

160

140

120

₹ 60

40

20

PHC.

0

05

1,0

3

Эквивалентная электропроводность типичных электролитов вплоть до высоких концентраций в водных растворах при 25

Fig. 24. Dependence of equivalent heat conductivity on concentration increase. The same on the table (right) for all kind of 1-1 electrolytes.

Хлористый натрий [1]

Fig. 25. Concentration dependence of molar activity coefficient. The same on the table (right).

(electrophoretic effect) & (the effect of relaxation)

					0						
m	Ацетат лития	LITOI	NaOH	NaF	NaCI	NaBr	NaJ	NaCIO,	NaCIO ₄	NaBrO3	NaNO-
0,1	0,784	0,772	0,764	0,765	0,778	0,782	0,787	0,772	0,775	0,758	0,762
0,2	0,742	0,723	0,725	0,710	0,735	0,741	0,751	0,720	0,729	0,696	0,703
0,3	0,721	0,695	0,706	0,676	0,710	0,719	0,735	0,688	0,701	0,657	0,666
0,4	0,709	0,674	0,695	0,651	0,693	0,704	0,727	0,664	0,683	0,628	0,638
0,5	0,700	0,659	0,688	0,632	0,681	0,697	0,723	0,645	0,668	0,605	0,617
0.6	0,691	0,647	0,683	0,610	0,673	0,692	0,723	0,630	0,656	0,585	0,599
0,7	0.689	0,638	0,680	0,60	0.667	0,689	0,724	0,617	0,648	0,569	0,583
0,8	0,688	0,630	0,677	0,592	0,662	0,687	0,727	0,606	0,641	0,554	0,570
0,9	0,688	0,623	0,676	0.582	0,659	0,687	0,731	0,597	0,635	0,541	0,558
1,0	0,689	0,617	0,677	0.578	0,657	0.687	0,736	0,589	0,629	0,528	0,548
1.2	0,693	0,605	0,679		0,654	0.692	0,747	0,575	0,622	0,507	0,530
1.4	0,700	0,595	0,684		0,655	0.699	0,763	0,563	0,616	0,489	0,514
1.6	0,709	0,586	0,690	_	0,657	0.705	0,780	0.553	0,613	0,473	0,501
1.8	0,719	0,575	0,698	_	0,662	0.718	0,799	0.545	0,611	0,461	0,489
2,0	0,729	0.568	0,707		0,668	0.731	0.820	0.538	0,609	0,450	0,478
2,5	0,762	0,558	0,741	_	0,688	0.768	0.883	0.525	0,609	0,426	0,455
3,0	0,798	0,556	0,782		0,714	0.812	0.963	0.515	0,611	_	0,437
3,5	0,837	0,559	0,833		0,746	0.865	1,053	0,508	0,617	_	0,422
4.0	0.877	0.566	0,901	_	0,783	0.929			0,626	_	0,408
4,5	-	0.575	0,982	_	0,826	_		-	0,637	_	0,395
5.0	_		1.074	_	0,874	_		_	0,649		0,386
5,5	_	- 1	1,178	-	0,928				0,662	_	0,378
6,0	-	- 1	1,296	-	0,986	_	-		0,677	-	0,371
		1	1		'\ /						

Коэффициент активности электролитов при 25°

Tab. 4. Experimental data (refernce book) on activity coefficient of eletrolytes & comparison with MD results [31].

CHAPTER 3. MD SIMULATIONS OF ATOMIC AND IONIC STRUCTURES, POLYMERS AND BIOLOGICAL MOLECULES

3.1.*DL_POLY* – A general-purpose MD simulation code

MD simulation packages: DL_POLY, AMBER, CHARMM, NAMD, etc.

DL_POLY (W. Smith et al.); Collaborative Computational Project CCP5 <u>http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/</u>)

A flowchart scheme → *input: CONFIG, CONTROL, FIELD; output: OUTPUT, REVCON, HISTORY*

Fig. 26. A flowchart scheme of the input and output files of DL_POLY.
cA j	cA file CONTROL of DL_POLY code for MD simulation of valinomycin molecule				
12345	x789				
	Valinomycin in w	ater			Line 1
	integrator leapf	rog verl	et		Line 2
	temperature	310.00			Line 3
	pressure	0.0000			Line 4
	ensemble nvt hoo	ver 0.5			Line 5
	steps	1000	0		Line 6
	equilibration	100			Line 7
	multiple	10			Line 8
	restart scale				Line 9
	scale	10			Line 10
	print	10	0		Line 11
	stack	100			Line 12
	stats	10	0		Line 13
	rdf	100			Line 14
	trajectory	1	100	0	Line 15
	timestep	0.0020			Line 16
	cutoff	12.000			Line 17
	delr width	1.2000			Line 18
	rvdw cutoff	10.000			Line 19
	reaction field p	recision	1.E-5		Line 20
	eps		70.0		Line 21
	shake tolerance				Line 22
quaternion tolerance		1.0E-5		Line 23	
	print rdf				Line 24
	job time	6000.0			Line 25
	close time	100.0			Line 26
	finish				Line 27

 Table 5a. A file CONTROL of DL_POLY for the MD simulation of valinomycin – a drug chain in a water solvent.

Line 5: NPT ensemble – Nose-Hoover thermostat with a 0,5 ps relaxation time at temperature 310 K. **Line 8**: the multiple timestep algorithm (Fig. 27).

Fig. 27. The multiple timestep algorithm: r_{cut} – cutoff & r_{prim} – primary cutoff radius.

Line 20 – Line 21: Method of calculation of the electrostatics potential - "reaction field":

$$U(r_{nj}) = \frac{1}{4\pi\varepsilon_0} q_n q_j \left[\frac{1}{r_{nj}} + \frac{B_0 r_{nj}^2}{2R_c^3} \right]$$

R_c- a cavern radius; B - expresses a dielectric constant of a continuum,

$$B_0 = \frac{2(\varepsilon_1 - 1)}{(2\varepsilon_1 + 1)}$$

Line 22: The use of a well-known algorithm "Shake" for the evaluation of chemical bonds (Fig. 28 for 3-site molecule, say water).

Fig. 28. A geometry of three atomic molecule (water) for illustration of "Shake" in chemical bonds estimation.

$$m_1 \frac{d^2 \boldsymbol{r}_1}{dt^2} = \boldsymbol{f}_1 + \boldsymbol{g}_1$$
$$m_2 \frac{d^2 \boldsymbol{r}_2}{dt^2} = \boldsymbol{f}_2 + \boldsymbol{g}_2$$
$$m_3 \frac{d^2 \boldsymbol{r}_2}{dt^2} = \boldsymbol{f}_3 + \boldsymbol{g}_3$$

Introducing "fictions" forces g, which are not existed in nature at all,

$$m_{\alpha}\frac{d^2\boldsymbol{r}_{\alpha}}{dt^2} = \boldsymbol{f}_{\alpha} + \boldsymbol{g}_{\alpha}$$

Along with forces f, which possess a realistic physical meaning,

Taken into account "constant nature of realistic forces" we have:

$$\boldsymbol{r}_{\alpha}(t+dt) = \boldsymbol{r}_{\alpha}'(t+dt) + (dt^2/m_{\alpha})\boldsymbol{g}_{\alpha}^r(t)$$

Prime ' indicates that the atomic position has now been defined for a new chemical bond length, which might deviate from an exact given value.

In "Shake" algorithm fictitious forces are expressed through the indeterminate Lagrange multipliers:

$$g_1^r = L_{12}r_{12}$$
$$g_2^r = L_{23}r_{23} - L_{12}r_{12}$$
$$g_3^r = -L_{23}r_{23}$$

This lead to:

$$r_{1}(t+dt) = r'_{1}(t+dt) + (dt^{2}/m_{1})L_{12}r_{12}(t)$$

$$r_{2}(t+dt) = r'_{2}(t+dt) + (dt^{2}/m_{2})(L_{23}r_{23}(t) - L_{12}r_{12}(t))$$

$$r_{3}(t+dt) = r'_{3}(t+dt) - (dt^{2}/m_{3})L_{23}r_{23}(t)$$

From this system we have:

$$\boldsymbol{r}_{12}(t+dt) = \boldsymbol{r}_{12}'(t+dt) + dt^{2}(m_{1}^{-1}+m_{2}^{-1})L_{12}\boldsymbol{r}_{12}(t) - dt^{2}m_{2}^{-1}L_{23}\boldsymbol{r}_{23}(t)$$

$$\boldsymbol{r}_{23}(t+dt) = \boldsymbol{r}_{23}'(t+dt) - dt^{2}m_{2}^{-1}L_{12}\boldsymbol{r}_{12}(t) + dt^{2}(m_{2}^{-1}+m_{3}^{-1})L_{23}\boldsymbol{r}_{23}(t)$$

Next suppose that, $|\mathbf{r}_{12}(t+dt)|^2 \sim |\mathbf{r}_{12}(t)|^2 = d_{12}^2$, $|\mathbf{r}_{23}(t+dt)|^2 \sim |\mathbf{r}_{23}(t)|^2 = d_{23}^2$ $|\mathbf{r}_{12}'(t+dt)|^2 = d_{12}'^2$, $|\mathbf{r}_{23}'(t+dt)|^2 = d_{23}'^2$

Ignoring quantities of small order we reduce the above system to:

$$\begin{aligned} &d_{12}^2 - d_{12}^{\prime 2} \sim 2dt^2 d_{12}^0 \ d_{12}^\prime (m_1^{-1} + m_2^{-1}) L_{12} \\ &d_{23}^2 - d_{23}^{\prime 2} \sim 2dt^2 d_{23}^0 \ d_{23}^\prime (m_2^{-1} + m_3^{-1}) L_{23} \end{aligned}$$

Denoting the relative atomic masses as,

$$M_{12} = m_1 m_2 / (m_1 + m_2)$$
$$M_{23} = m_2 m_3 / (m_2 + m_3)$$

We finally find restraint forces for correction of chemical bonds and keeping them within a given value:

$$L_{12} = M_{12}(d_{12}^2 - d_{12}'^2)/2dt^2 d_{12}^0 d_{12}'$$

$$L_{23} = M_{23}(d_{23}^2 - d_{23}'^2)/2dt^2 d_{23}^0 d_{23}'$$

 $L_{12} \& L_{23} \sim \{d_0, d', d\};$ "Shake" precision is about $10^{-6} - 10^{-8} \text{ Å}$ (Fig. 29).

Fig. 29. Correction of chemical bond length for atoms 1 and 2 by "Shake" algorithm.

cFile CONFIG of DL_POLY code for MD simulation of valinomycin molecule						
123452	x789.				73	
	Vali	inomycin in water:	structure		Line	1
		2 4	53968 .20000	00000E-02	Line	2
-		42.8612871524	.0000000000	.000000000	Line	3
-		.000000000	42.8612871524	.000000000	Line	4
		.000000000	.0000000000	42.8612871524	Line	5
	СТ	1			Line	6
		-5.367652772	-4.974650238	-5.990217152	Line	7
		-3.753414027	-2.997453843	4.469020573	Line	8
	0	-4347.618322	/85./15/385	14/3.633382	Line	9 1 0
	CT	2 002701257	-2 112065206	-0 072751562	Line	1 U
		- 1064779764	-7 0050//307		Lino	12
		-7650 921206	7084 040034	1636 196069	lino	13
-	ст	7059.021290	/001.010031	1050.100000	Line	11
-	01	6161357221	- 7620477643	2241570309	Line	15
-		7626881371	-3 230043534	5300852274	Line	16
		672,8034938	-5115,436464	1472,292984	Line	17
	с	4	01101100101	11/2/202001	Line	18
	•	-4.576445424	-6.095700053	-6.560959051	Line	19
		-6.435542296	-2.986174745	. 6915005257	Line	20
		-11128.04339	313.0420425	-6860.330915	Line	21
	os	168			Line	22
		3.953242981	-4.265625023	-5.157477057	Line	23
		2.037098502	7.924826062	-2.451876949	Line	24
		711.3693932	277.1200307	-5054.020265	Line	25
	OW	169			Line	26
		5.522198488	-14.84674196	-4.982890963	Line	27
		4.724945455	-3.298600273	1.078266933	Line	28
		-3469.032769	2591.065835	-1423.106333	Line	29
	HW	170			Line	30
		4.707204204	-14.90335074	-4.406193668	Line	31
		12.22520228	4.086466127	12.83419668	Line	32
		213.7403021	-1200.047681	-101.5791039	Line	33
	HW	171			Line	34
-		6.337454088	-15.00109894	-4.424740231	Line	35
		11.820/81/1	-4.14/05456/	-9.238803515	Line	30
		-145.0109002	-2090.39//04	-1199.000029	riue	57
	 ∩₩	. 3835			Line	38
-	01	-3 771242045	4 912250678	-6 987072552	Line	30 39
		-4.737404413	-5.829716051	1864001141	Line	40
		533.1145622	-1843.454971	1569.362128	Line	41
	HW	3836			Line	42
		-3.611762042	4.892056784	-6.000077951	Line	43
		10.53385707	21.44077800	-1.105488471	Line	44
		-2562.587161	854.6097693	-521.4547331	Line	45
	нw	3837			Line	46
		-3.018952072	4.449769328	-7.456296172	Line	47
		11.23531109	17.95573648	.2288509516	Line	48
		1333.931646	2590.985093	579.0148462	Line	49

 Table 5b. File CONFIG of DL_POLY for MD simulation of valinomycin molecule in water.

Line 2: (x, y, z), (v_x, v_y, v_z) , (f_x, f_y, f_z) ; "truncated octahedral boundary conditions" (Fig. 30).

Fig. 30. "Truncated octahedral boundary conditions" for valinomycin molecule in water solvent with potassium ions.

cFil	le FIELD of	DL_P	OLY c	ode for	MD sin	nulation of	^c valinomyci	in molecule			
12345	x789						· · · · · · · · ·				73
	Valinomy	ycin	in w	ater	ford	efield				Line	1
	UNITS ko	cal								Line	2
	molecula	ar ty	ypes	2						Line	3
	Valinomy	ycin								Line	4
	nummols	1								Line	5
	atoms 1	68	ma	iss		charge	rept			Line	6
	СТ		12.	0100		0.2820	3			Line	7
	С		12.	0100		0.4670	3			Line	8
										Line	9
	os		16.	0000	-	0.4550	3			Line	10
	constra	ints	168							Line	11
	4	1	1.	48610)5	1				Line	12
	31	1	1.	52356	55	19				Line	13
	160	52	1.	20622	23	157				Line	14
	angles	312	2							Line	15
	harm	4	1	31	126.	00	111.10		1	Line	16
	harm	4	1	57	70.0	000	109.50		2	Line	17
	harm	42	168	45	200.	00	116.40		312	Line	18
	dihedra	ls 49	50							Line	19
	cos	146	4	1	151	0.	0.		2	Line	20
	cos	34	31	1	57	0.1444	14 0.		3	Line	21
	cos	48	51	150	139	1.0000	180.0	00	2	Line	22
	finish									Line	23
	spc wate	er								Line	24
	nummols	1223	3							Line	25
	atoms 3									Line	26
	OW		15.	9996		-0.82	1			Line	27
	HW		1.0	800		0.41	2			Line	28
	rigid be	odies	s 1							Line	29
	3	1	2	3						Line	30
	finish									Line	31
	vdw 5	5								Line	32
	С		С	lj	0.120	000	3.2963			Line	33
				-							
	н		н	lj	0.020	0000	1.7818			Line	34
				-							
	N		N	lj	0.160	000	3.1181			Line	35
				-							
	0		0	1j	0.200	000	2.8509			Line	36
•	OW		OW	lj	0.156	500	3.166			Line	37
•				-							
•	close									Line	38

 Table 5c. File FIELD of DL_POLY code, containing information about valinomycin' mass, charges, potentials.

3.2. The use of *DL_POLY* code in MD simulation of atomic and ionic structures, polymeric chains and biomlecules

In collaboration with 5th students (master-graduate course) of International University "Dubna" & Keio University of Japan

Published by:

The Open Physical Chemistry Journal, Natural Science, Advances in Biosciences and Biotechnologies.

I. Molecular dynamics simulation of valinomycin interactions with ions K⁺ and Na⁺ in water

Ref:

"Advances in Bioscience and Biotechnology", 2010,1,216-223; <u>http://www.SciRP.org/journal/abb/</u> by Maria Abasheva, Svetlana Murav'eva, Viktoria Tuzova (5th year students of 2008-2009 graduation)

Fig. 31(a,b). Valinomycin configuration (left – view on molecule surface, right – side view).

Simulation details:

Ver. 2.19 of *DL_POLY*, (<u>http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/</u>). (truncated octahedron boundary conditions; 42,86 Å; *NVT* ensemble; integration time step 2 fs; *Shake* ctolerance 10^{-8} ; Water $1113 \times 3=3339$, potassium (sodium) ions 109.

$$E = E_{val} + E_{nb}$$

$$E_{val} = E_r + E_{\theta} + E_{\varphi} + E_{inv}$$

$$E_{nb} = E_{VDW} + E_{\theta l} + E_{hb}$$

$$U(r) = \left(\frac{A}{r^{12}}\right) - \left(\frac{B}{r^6}\right)$$

LJ-potential:

Atomic pair	Potential	Functional form	Parameters	ε, kcal/mol	σ, Å
C-C	LJ	$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$	ε, σ	0.12	3.30
H-H	•••			0.02	1.78
N-N	•••	•••	•••	0.16	3.12
0-0		•••		0.20	2.85
OS-OS		•••		0.15	2.94
Oe-Oe	•••	•••	•••	0.20	2.85
OW-OW	•••	•••	•••	0.16	3.17
HW-HW	•••			0.02	1.78
K-K	•••	•••		0.32	3.13
Na-Na	•••	•••		0.08	2.73

 Table 6. Parameters of LJ (Lennard-Jones) potential.

$$\sigma_{CS} = \frac{\sigma_{CC} + \sigma_{SS}}{2} \qquad \varepsilon_{CS} = [\varepsilon_{CC} * \varepsilon_{SS}]^{1/2}$$

Lorentz-Berthelot combining rules:

Table 7. Masses and charges for the system of value value $K^{(Na)}$

Atom	Mass number (in a.e.u)	Charge q (in e , proton)
С	12.01	+0.47
Н	1.00	+0.21
Ν	14.01	-0.40
0	16.00	-0.41
OS	16.00	-0.46
Oe	16.00	-0.41
OW	15.99	-0.82
HW	1.00	+0.41
K	39.10	+1.00
Na	23.00	+1.00

Fig. 32. Six sequential snapshots of valinomycin with potassium at t=0, 1, 2, 3, 5 and 10 ps (left to right, top to bottom).

 $U_{cr} = E_{cr}d$

d∼3Å

$$U_{cr}(K^{+}) \sim 5 \times 10^{8} \text{ N/C} \times 3 \times 10^{-10} \text{ m} \sim 150 \text{ mV}$$

 $U_{cr}(Na^{+}) \sim 3 \times 10^{6} \text{ N/C} \times 3 \times 10^{-10} \text{ m} \sim 90 \text{ mV}$

Table 8. *Critical values of electrical field strength for* $K^+ \& Na^+$.

Critical electric field	\mathbf{K}^+	Na^+
E _{cr} , ×10 ⁸ Н/Кл	5	3
$\mathrm{U_{cr,}} imes 10^{-3}\mathrm{B}$	150	90

Fig. 33(a,b). (a)Trajectory diagram of ion capturing by valinomycin molecule. (b)Three sequential configuration of valinomycin cavern with potassium ion captured inside.

II. Molecular dynamics study of phase transformation of biphenyl molecule in an active solvent

Ref:

The Open Physical Chemistry Journal, 2010, 4, 10-16 by Alena Chulkova, Natalia Shastova, Olga Medvedkina (5th year students of 2008-2009 graduation)

Fig. 34. Configuration of molecular system biphenyl + sovent HNO₃.

 Table 9. Masses and charges in the system biphenyl – active solvent.

Atom	Mass number (m _e ,a.u.)	Charge number q (e , proton)
С	13.02	0.15
q	0.	-2.253
q	0.	+3.606
NO ₃	62.005	0, -0.01, -0.02, -0.03,, -1
Н	1.008	0, +0.01, +0.02, +0.03,, +1

Three kind potentials were used:

- (1) Power series potential (nm),
- (2) Buckinghem potential (buck),
- (3) Lennard-Jones potential (lj).

Atomic pair	Poten- tial	Functional Form	Para- meters	E ₀ , kJ/mol	Ν	m	r ₀ , Å
C-q	nm	$U(r) = \frac{E_0}{(n-m)} \left[m \left(\frac{r_0}{r} \right)^n - n \left(\frac{r_0}{r} \right)^m \right]$	E ₀ , n, m, r ₀	0.2	12.0	6.0	3.37

Table 10a. Potential parameters for atomic pair C-q.

Table 10b. Potential parameters for atomic pair C-C.

Atomic pair	Poten-	Functional	Para-	A,	ρ,	С,
	tial	Form	meters	kJ/mol	Å	Å ⁶
C-C	buck	$U(r) = A \exp\left(-\frac{r}{\rho}\right) - \frac{C}{r^6}$	A, rho, C	369743.0	0.28	2576.2

Table 10c. . Potential parameters for atomic pairs C-NO₃ and NO₃-NO₃.

Atomic	Poten-	Functional	Para-	ε,	σ,
pair	tial	form	meters	kJ/mol	Å
C-NO ₃	lj	$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$	ε, σ	0.41838	3.14
NO ₃ -NO ₃	lj		ε, σ	0.41115	2.93

RESULTS:

Fig. 37(a-d). The energies of Van-der-Waals (a), coulomb (b) interactions, along with valence angular (c) and torsional (d) chemical bonds.

Fig. 38(a,b). Six sequential snapshots of biphenyl configuration in solvent medium for (a) q=0.05 and (b) q=0.07 at t=0, 1, 2, 3, 5 and 10 ps (from left to right and top to bottom).

III. Molecular dynamics simulations of interactions of gold nanoclusters with a DNA fragment in hexagonal geometry

Ref:

Preprint JINR, P19-2009-89, 2009, p.16

by Olga Medvedkina, Alena Chulkova, Natalia Shastova, (5th year students of 2008-2009 graduation)

Fig. 40. A fragment of DNA molecule with complementary nucleotide pairs A-T and G-C. Spheres show the atoms of phosphorus (P), carbon (C), nitrogen (N), oxygen (O) and hydrogen (H).

Fig. 41(a,b). Configuration of DNA and solvent (water and gold particles).

Atom	Mass number (m _e ,a.u.)	Charge number q (e , proton)
P3	30.97380	1.16590
02	15.99940	-0.77610
C3	12.01100	-0.00690
Н	1.00800	0.07540
N2	14.00670	-0.57250
Au	196.9665	0,1; 0,2,, 1

Table 12. Masses and charges of the system DNA – solvent.

Table 13. Potential parameters for interacting atomic pairs.

Atomic pair	Poten- tial	Functional Form	Para- meters	Α	В
P3-Au	12-6		607263.0 49906.7	607263.0	537.753
O2-Au		$U(r) = \left(\frac{A}{r^{12}}\right) - \left(\frac{B}{r^6}\right)$		49906.7	117.423
C3-Au			A, B	233167.0	242.343
H-Au				32513.3	57.9368
N2-Au]			184346.0	199.084

The Van-der-Waals interactions are described via 12-6 (LJ-type) potential:

$$U(r) = \left(\frac{A}{r^{12}}\right) - \left(\frac{B}{r^6}\right)$$

RESULTS:

Fig. 42(a-c). Three sequential configuration snapshots of the system for q=0.1 (top view – left, side view – right); (a) t=0, (b) t=25 ps, (c) t=50 ps.

Fig. 42(a-c). Three sequential configuration snapshots of the system for q=0.7 (top view – left, side view – right); (a) t=0, (b) t=25 ps, (c) t=50 ps.

The behavior of RDF (radial distribution function) of atomic pair O2-Au:

Fig. 43. Graph of RDF for atomic pair O2-Au depending on the solvent potential (charge number q).

a)

Fig. 44(a-d). Graphs of the RDF at q=0.1 and 0.7: (a) P3-Au, (b) O2-Au, (c) H-Au, (d) C3-Au.

IV. Molecular dynamics simulations of phase changes of K-Na disilicate glass in an active solvent

Ref:

Preprint JINR, *P12-2009-84*, *2009*, *p.15* by Natalia Shastova, Viktoria Tuzova, Alena Chulkova, Olga Medvedkina (5th year students of 2008-2009)

 $nSiO_2+2MOH_{aq} = (M_2O \cdot nSiO_2)_{aq}+H_2O$

Fig. 45. Configuration of alkali disilicate and water.

Fig. 46. Configuration of K-Na disilicate glass + alkali solvent NaOH (sodium and hydroxyl ions; blue – positive Na⁺, red - anion OH).

 Table 14. Masses and charges for the system of disilicate glass – alkali solvent.

Atom	Mass number (m _e ,a.u.)	Charge number q (e , proton)
Na ⁺	22.9898	1.0
K^+	39.1000	1.0
Si ⁴⁺	28.0860	4.0
O^{2}	15.9994	-2.0
Na	22.9898	+[0.0, 0.01, 0.02,, 1.0]
ОН	17.0073	-[0.0, 0.01, 0.02,, 1.0]

 Table 15. Potential parameters for the interacting atomic pairs.

Atomic pair	Potential	Functional Form	Param-s	A, kJ/mol	ρ, Å	С, Å ⁶
$K^+ - K^+$ $K^+ - Na^+$ $K^+ - Na$ $Na^+ - Na^+$ $Na^+ - Na$ $K^+ - OH$ $Na^+ - OH$ Na - Na $Si^{4+} - K^+$ $Si^{4+} - Na^+$ $Si^{4+} - Na$ $Si^{4+} - Si^{4+}$ $Si^{4+} - OH$	buck	$U(r) = A \exp\left(-\frac{r}{\rho}\right) - \frac{C}{r^6}$	Α, ρ, C	0.	1.	0.
$O^{2-}K^+$	buck		Α, ρ, C	8236593.92	0.37	0.
$O^{2-} Na^+$	buck		Α, ρ, C	5236217.19	0.36	0.
O^{2-} Na	buck		Α, ρ, C	5236217.19	0.36	0.
$O^{2-}OH$	buck		Α, ρ, C	8236593.92	0.37	0.

RESULTS:

Fig. 47. Graphs of diffusion coefficient for the system K^+ – Na^+ disilicate glass at different values q.

Table 16. The dynamics of the temperature, total energy, VdW and valence angular bond energies at different values of charge number q of solvent molecules (from top to bottom).

Table 17. The RDF (radial distribution functions) of the interacting atomic pairs at different coulomb potential (charge number q) of the solvent.

Fig. 48. Four sequential snapshots, illustrating the dynamics of the K^+ - Na^+ disilicate glass – active solvent.

CHAPTER 4. THE USE OF QUANTUM-CHEMICAL POTENTIALS IN MD SIMULATIONS

4.1. Hybrid of classical molecular dynamics (MD) and quantum chemistry molecular dynamics (qMD) (*Ab initio* quantum chemistry)

Conventional molecular dynamics (MD) \rightarrow

Quantum chemistry molecular dynamics (qMD) → *Ab initio* quantum chemistry →
Density functional theory (DFT) →
Involving solution of Schrödinger equation

Example: hydrogen molecule H_2 ; two protons (a & b) & two electrons (i=1, 2);

 $r_{12} \& r_{ab}; r$ - interatomic distance

$$E = E_a + E_b + U$$
$$U(r) = E(r) - E_a - E_b$$

$$E \sim \frac{\int \dots \int \psi^* \hat{H} \psi \, dr_{a1} \dots dr_{b2} dr_{12}}{\int \dots \int \psi^* \psi \, dr_{a1} \dots dr_{b2} dr_{12}}$$
$$E \sim \frac{\langle \psi^* \mid \hat{H} \mid \psi \rangle}{\langle \psi^* \mid \psi \rangle}$$

$$U(r) = \frac{\langle \psi^*(r) \mid \hat{H} \mid \psi(r) \rangle}{\langle \psi^*(r) \mid \psi(r) \rangle} - E_a - E_b$$

$$m_i \frac{d^2 r_i}{dt^2} = -\frac{dU(r_i)}{dr_i}$$

Adiabatic approximation (Born-Zommerfeldt's) in quantum mechanics:

$$y(\boldsymbol{r},\boldsymbol{R}) = y_e(\boldsymbol{r},\boldsymbol{R}) y_n(\boldsymbol{R})$$
$$\hat{H}y(\boldsymbol{r},\boldsymbol{R}) = Ey(\boldsymbol{r},\boldsymbol{R})$$

$$\hat{\mathbf{H}}_{e} y(\boldsymbol{r}, \boldsymbol{R}) = E_{e}(\boldsymbol{R}) y_{e}(\boldsymbol{r}, \boldsymbol{R})$$

$$m_i \frac{d^2}{dt^2} \mathbf{R}_i = - \,\vec{\nabla}_i E(\mathbf{R})$$

Fig. 49. Molecules are described as a set of spheres & springs, which imitate the interaction force field provided by quantum chemistry laws.

4.2. Tersoff potential for MD simulation of systems that contain carbon, silica, germanium, etc. alloys (*MD/qMD*, Ab initio quantum chemistry)

Carbon Nanotubes (CNTs) \rightarrow Chemical bonding is hybridization sp^2 (as graphite) \rightarrow It's stronger than sp^3 bond (of diamond)

The nature of chemical bonding in CNTs is described by quantum chemistry \rightarrow Through the process of orbital hybridization

Tersoff potential in hybrid MD simulations correctly describes the nature of covalent bonding \rightarrow It's good for simulating systems that contain carbon, silica, germanium and alloys of these elements

The peculiarities of Tersoff potential \rightarrow

Allows the breaking & formation of chemical bonds \rightarrow

That is associated with hybridization process

Tersoff potential is pair wise potential → But coefficient in attractive term depends on local environment → Thus Tersoff potential possesses a many body nature

 $U_{ij} = f_{c}(r_{ij}) [f_{R}(r_{ij}) - \gamma_{ij}f_{A}(r_{ij})]$ $f_{R}(r_{ij}) = A_{ij} \exp(-a_{ij}r_{ij}) \quad f_{A}(r_{ij}) = B_{ij} \exp(-b_{ij}r_{ij})$ $f_{c}(r_{ij}) = \frac{1}{2} + \frac{1}{2} \cos[\pi(r_{ij} - R_{ij})/(r_{ij} - R_{ij})] \quad R_{ij} < r_{ij} < S_{ij},$

$$(f_{\mathcal{C}}(r_{ij}) = 1, \text{ diff } r_{ij} < R_{ij} \text{ if } f_{\mathcal{C}}(r_{ij}) = 0, \text{ diff } r_{ij} > S_{ij}),$$

$$\gamma_{ij} = \mu_{ij}(1 + \beta_i^{\vartheta_i} L_{ij}^{\vartheta_i})^{-1/2\vartheta_i}, \quad L_{ij} = \sum_{k \neq i,j} f_{\mathcal{C}}(r_{ik})\omega_{ik}g(\varphi_{ijk}),$$

$$g(\varphi_{ijk}) = 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos\varphi_{ijk})^2},$$

$$a_{ij} = (a_i + a_j)/2, \quad b_{ij} = (b_i + b_j)/2,$$

$$A_{ij} = (A_i A_j)^{1/2}, \quad B_{ij} = (B_i B_j)^{1/2}, \quad R_{ij} = (R_i R_j)^{1/2},$$

$$\mu_{ii} = 1, \quad \mu_{ij} = \mu_{ji},$$

$$\omega_{ii} = 1, \quad \omega_{ij} = \omega_{ji}.$$

We used Tersoff potential to simulate CNT in solution from CS_2 molecules (see, Tab. 18 & Fig. 50(a-e)):

$$A = 1393,6, a = 3,4879, B = 346,74, b = 2,2119, R = 1,8, S = 2,1,$$

$$\beta = 1,5724 \times 10^{-7}, \vartheta = 0,72751, c = 38049, d = 4,3484, h = 0,57058.$$

Atomic	Functional	Para-	ε,	σ,
pair	Form	meters	eV	Å
C-Cs	$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$	ε, σ	0.0044	3.35
C-S	•••	ε, σ	0.0082	3.44
S-S		ε, σ	0.0153	3.52

 Table 18. Parameters of Tersoff potential for the CNT-CS2 model.

Fig. 50(a-c). CNT (carbon nanotube) and a solution from molecules CS₂.

Fig. 50(d-e). Configuration of the solvent CS₂ molecules around the CNT.

Fig. 50(f-h). Self-assembly of the liquid (left) and RDF (right) for the atomic pair $C-C_s$ in the system of $CNT-CS_2$) depending on the temperature.

4.3. Gupta-Morse potential for the MD simulation of metals & metallic alloys (MD/qMD, *Ab initio* quantum chemistry, DFT)

Gupta-Morse – Density functional theory (DFT) – Anharmonic potential (1929):

$$-\frac{1}{2m}\frac{d^2\psi(r)}{dr^2} + U(r)\psi(r) = E\psi(r)$$

$$U(r) = E_0[\{1 - \exp(-k(r - r_0))\}^2 - 1]$$

(Cu₃Au), (Au₃Cu), etc.

$$U_i(r) = \frac{1}{2} \sum_{j \neq i} A \exp\left(-p\frac{r_{ij} - r_0}{r_0}\right) - B\sqrt{\rho_i}$$
$$\rho_i = \sum_{j \neq i} \exp\left(-2q_{ij}\frac{r_{ij} - r_0}{r_0}\right)$$

Ref: By Irina Bek-Muhammedova and Kiril Ionov (5th year students of 2009-2010)

(Cu₃Au), (CuAu₃), (Ag₃Au), (AgAg₃), (Al₃Ni), (Ni₃Al), etc.

The goals of the MD simulations using Gupta-Morse potential:

- Comparison of simulation data and phase diagrams on melting temperature,
 - Estimation of melting process and alloys modification.

RESULTS: (eng_tot, temp_tot, press) \rightarrow (Cu₃Au) \rightarrow (temp 300K, 1000K, 2000K, etc.)

Fig. 51(a,b). Thermodynamical quantities (eng_tot, temp_tot, press) for the alloy Cu₃Au at (a)300K u (b)2000K.

Fig. 52. RDF for atomic pair (Cu-Au) in the system of Cu₃Au depending on the temperature.

• Функция радиального распределения Cu₃Au (Cu-Cu)

Fig. 53. RDF for atomic pair (Cu-Cu) in the system of Cu₃Au depending on the temperature.

APPENDIX I. UNIX commands (OS Linux)

Как было отмечено выше в предыдущих главах, многие известные и употребительные компьютерные коды многоцелевого назначения для МД-моделирования, такие как, *DL_POLY*, *AMBER, CHARMM, NAMD* и т.п., адаптированы, в основном, под *OS Linux* (оперативной средой *UNIX*). Поэтому без знания основных команд *OS Linux* невозможно успешно проводить МД-моделирование [31-38]. Ниже в Таблицах I(а,б) даются сведения о некоторых основных, наиболее часто встречающихся командах и опциях *OS Linux*, а также краткие описания его двух редакторов, *Vi* и *Emacs*. Более подробное изложение команд и редакторов *Linux* занимает объемы целых книг, они широко доступны – в литературе или через интернет.

Команды UNIX (OS Linux)				
<u>Communication,</u> printing;	File management:	<u>TheVi, Emacs</u> Editors:		
 ftp telnet ssh scp b 	 cat diff diff3 chmod 	■ vi <i>file</i> ■ a ■ i ■ o		
 ip cancel lpstat cal 	cp mkdir Is mv	 dw dd mv 		
 clear kill su man 	 rm rmdir pwd ln 	 ZZ :x :w file :wq 		

Таблица Ia. Основные команды и опции оперативной системы UNIX (OS Linux).

- команды, относящиеся к коммуникациям, работе с файлами и редактором Vi
- *ftp* связаться с удаленным компьютером для копирования файлов с/на удаленную машину; *ftp* <*IP*_адрес удаленной машины>.
- *telnet* связаться с другой машиной для открытия сеанса работы; *telnet* <*IP*_адрес>.
- *ssh* войти в сеанс на удаленной машине; *ssh* <имя@*IP*_адрес_удаленной_машины>.
- *scp* скопирует файл с локального компьютера на удаленном компьютере.
- kill <PID> "убить" процесс. Для начала определите PID Вашего "убиваемого" процесса при помощи ps axu | grep <noльзователь> -отображаются все процессы, запущенные в системе от пользователя.
- *cat* вывод содержимого файла на экран; *cat* <имя_файла>.
- *diff* различия содержания двух файлов; *diff* <имя_файла1> <имя_файла2>.
- *chmod* изменить права доступа к файлу, владельцем которого Вы являетесь. Три способа доступа к файлу: чтение *read* (*r*), запись *write* (*w*), исполнение *execute* (*x*) и три типа

пользователей: *owner* (u) владелец файла, (g) члены той же группы и (o) все остальные. *chmod* a+r file для всех (*all*) устанавливает права доступа на чтение "file".

- cp копировать файлы; cp < file > <куда_копировать > (<или с другим именем >).
- *mkdir* создать новый каталог (<новую директорию>).
- *ls* выдать список файлов в текущем каталоге.
- *mv* переместить или переименовать файл; *mv* <старый файл> <новый файл>.
- *гт* удалить файл(ы). удалить пустой каталог.
- *rmdir* удалить каталог (<директорию>).
- *pwd* вывести имя текущего каталога (<директории>).s
- *ln* создать символическую ссылку; *ln* –*s* <на_что_сделать_ссылку> <имя_ссылки>.
- \blacksquare *vi file* открыть редактирование Vi файла *file*
- а добавить символ, текст, в позиции курсора.
- *i* ввод символа, текста; начать редактирование .
- *о* ввод новой строки под клавиатурой.
- \blacksquare *сw* изменить слово, *change word*.
- dw удалить слово, *delete word*.
- \blacksquare *dd* удалить строку.

- ZZ выход из редактора Vi файла с сохранением всех внесенных изменений.
- \blacksquare :*x* то же самое что и ZZ.
- :w file выход из редактора Vi с сохранением нового имени file.
- :wq выход из редактора Vi с сохранением старого имени file; write and quit

Таблица Іб. (ч.2) Основные команды и опции оперативной системы UNIX (OS Linux).

команды, относящиеся к коммуникациям, работе с файлами и редактором *Emacs*

- *mailx* прочитать или отослать письмо к другим пользователям users.
- write интерактивная беседа с пользователем user; write message.
- **rlogin** соединение локального терминала с отдаленным *remote host*.
- ипате вывести информацию о версии операционной системы.
- *ps a* вывести список текущих процессов в Вашем сеансе работы.
- *help* или *man* вывести инструкцию; почитать любое руководство по *Linux*.
- *shutdown* выключить компьютер с уничтожением всех процессов.
- *whoami* вывести имя под которым Вы зарегистрированы.
- *chown* изменить владельца файлов.
- *итаsk* установить права доступа файлов по умолчанию, противоположное *chmod*.
- grep поиск фрагмента текста в файлах, удовлетворяющего набранной маске.
- *more* просмотр содержимого текстового файла по страницам; *more* <имя файла>.
- *tar* распаковать архив *tgz* или *tar.gz; tar -zxvf* <файл>.
- ...

- gunzip распаковать файлы (директории); gunzip –c file.tar.gz / tar -xvf.
- *zcat* распаковать .*Z*-файлы.
- *make* программа генерирования последовательности команд для компиляции и дальнейшего исполнения под оболочкой UNIX.
- *find* найти файл и отобразить результат поиска на экране; *find* <каталог> -*name* имя_файла поиск начинается с каталога <каталог>, а "имя файла" может содержать маску для поиска.
- *emacs file* открыть редактирование *Emacs* файла *file*.
- *С-х С-s* сохранить буфер (файл).
- C-x C-c выход из редактора *Emacs*.
- C-x u отменить последнее изменение.
- *С-d* удалить букву.
- M-d удалить слово.
- *С-х С-w* записать буфер (файл).
- *С-х і* вставить файл в позиции курсора.
- *С-х 2* разделить окно горизонтально на два.
- C-x 5 разделить окно вертикально на два.
- $C x \circ -$ переместиться к другим окнам.
- *С-х 0* закрыть окно.

APPENDIX II. Compiling and running programs under *UNIX* environment (*OS Linux*)

Под операционной системой UNIX (OS Linux) на сегодняшний день в основном проводится вся реальная вычислительная работа в области МД-моделирования – в физике, биохимии или нанотехнологических исследованиях. Linux на сегодняшний день адекватен все возрастающим потребностям молекулярного моделирования и в этой операционной среде разработано очень много программных утилитов, языков, компиляторов и т.п., необходимых для реализации крупномасштабных МД-вычислений. Перечислим некоторые из встроенных в Linux утилитов, компиляторов и т.п., с помощью Таблицы IIa:

Утилиты	Назначение утилитов
g77	<i>GNU FORTRAN</i> компилятор.
f2c	перекодировщик из FORTRAN в C.
fort77	компилятор FORTRAN. Выполняет $f2c$, а затем использует gcc или $g++$.
emacs	редактор <i>emacs</i> (в X терминале); см. выше; -очень многофункционален, но весьма
	сложен для неопытных пользователей.
gcc	GNU C компилятор <c_исходник>. В сети есть очень хорошие руководства по</c_исходник>
	использованию.
g ++	$GNU C++ < cpp_исходник > компилятор.$
perl	очень мощный скриптовый язык. Чрезвычайно гибкий, но с довольно сложным
	синтаксисом. Очень популярен среди продвинутых пользователей.
	современный и довольно элегантный объектно-ориентированный интерпретатор.
python	Выглядит таким же мощным, при этом немного проще, чем perl.
	поиск фрагмента текста в файлах, удовлетворяющего набранной маске. Маска
grep	определяется с помощью стандартной системы обозначений.
	translation utility (другими словами - замена букв в текстовом файле).
tr	GNU awk (используется для обработки форматированных текстовых файлов).
gawk	 утилит для обработки текстовых файлов.
(awk)	
sed	

Таблица Па	. Некоторые основные утилиты	OS Linux.
------------	------------------------------	-----------

Если набрана небольшая программа на *FORTRAN*e, скажем "*lj-dynamics.f*", то исполняемый модуль компилируется в два этапа:

(1) g77 -c lj-dynamics.f

(2) **g77** -*o lj-dynamics.o lj-dynamics.exe* (".*exe*" от слово *executable*, исполняемый).

Теперь следующей командой исполняемый файл "*lj-dynamics.exe*" запускается на счет: *./lj-dynamics.exe*

Если программа, компьютерный код, является большой, что характерно для МДмоделирования, – из десяток или сотен подпрограмм, то для создания загрузочного модуля используют *make*. Утилит *make* на *FORTRAN* представляет собой целую программу генерирования последовательностей команд, – от выбора версии *Linux* из множеств (если они прописаны), компиляции, до создания финального ".*exe*"-файла. Ниже на Таблице IIб приведен пример одного из таких *make* утилитов на *FORTRAN*e, предназначенный для компиляции и создания исполняемого файла "*DL_POLY.exe*".

Таблица IIб. Утилит *таке* для компиляции многоцелевого кода МД-моделирования DL_POLY.

```
Утилит make на FORTRANe для компиляции и создания исполняемого DL POLY.exe
#_____
# Define default settings
CC = gcc
EX = DLPOLY.X
SHELL=/bin/sh
______
# Define object files
OBJ MOD = parse module.o setup module.o error module.o \
   site module.o config module.o pair module.o utility module.o \
   tether module.o vdw module.o rigid body module.o \
   angles module.o bonds module.o shake module.o \
OBJ SRC = dlpoly.o
gfortran:
   $(MAKE) FC="mpif90" LD="mpif90 -o" \
   LDFLAGS="-O2 -ffast-math" \
   FFLAGS="-c -O2 -ffast-math" \
   EXE=$(EX)
# ______
# Clean up the source directory
clean:
   rm -f $(OBJ_MOD) $(OBJ_SRC) *.mod
# Declare dependencies
.f.o:
   $(FC) $(FFLAGS) $*.f
.c.o:
   $(CC) -c $*.c
# Declare dependency on module files
$(OBJ SRC): $(OBJ MOD)
#______
```

APPENDIX III. Codes and packages of the MD simulation

Перечислим некоторые употребительные коды многоцелевых программ МД-моделирования, которые включают в себя как классические, так и квантово-химические методы и алгоритмы.

(1) AMBER (ambermd.org)

Программный комплекс Amber (Assisted Model Building with Energy Refinement) состоит из набора силовых полей для моделирования макромолекулярных структур (белки, нуклеиновые кислоты и ряд других классов молекул) и пакета программ квантовой и молекулярной механики. Пакет находится в открытом доступе.

(2) CHARMM (www.charmm.org)

Пакет программ CHARMM (Chemistry at HARvard Macromolecular mechanics) для молекулярного моделирования широкого круга систем - от небольших молекул до биологических макромолекул, с применением различных энергетических функций и моделей — от квантовых моделей и силовых полей в молекулярной механике до полноатомных классических потенциалов.

(3) DL_POLY (www.cse.scitech.ac.uk/ccg/software/DL_POLY/)

Пакет для моделирования молекулярной динамики сложных систем с проведением как последовательных, так и параллельных расчетов. Доступны версии: DL_POLY_2, DL_POLY_3 и DL_POLY_4. Возможны параллельные расчеты с числом атомов до 1 млн с использованием 1024 процессоров. Адаптирован под графические игровые процессоры, GPU (Graphical Processing Units), с использованием языка CUDA. Имеется в свободном доступе для исследовательских и образовательных целей.

(4) GROMACS (www.gromacs.org)

Пакет программ для быстрого моделирования динамики крупных молекулярных систем (от тысяч до миллионов частиц). Предназначается главным образом для моделирования биомолекул (белки и липиды), имеющих много связанных взаимодействий между атомами. Работает в среде Linux и распространяется свободно.

(5) LAMMPS (lammps.sandia.gov)

Некоммерческий пакет LAMMPS (Large scale Atomic/Molecular Massively Parallel Simulator) использует методы классической молекулярной динамики для моделирования и расчетов полимеров, биомолекул, твердых веществ (металлов, полупроводников и т. п.), а также крупнозернистых мезоскопических систем в атомном, мезоскопическом и континуальном масштабах.

(6) MOE (www.chemcomp.com)

MOE (Molecular Operating Environment) — комплекс программ для моделирования молекул, в частности больших биомолекул. Методы молекулярной механики и динамики разработаны в нем на основе различных силовых полей.

(7) NAMD (www.ks.uiuc.edu/Research/namd/)

Объектно ориентированная программа для расчетов в области интерактивной молекулярной динамики, в частности для моделирования больших биомолекулярных систем, требующих значительных ресурсов. Программный код свободно распространяется для различных параллельных вычислительных платформ.

(8) HyperChem (www.hyper.com)

Программный комплекс HyperChem (последняя версия 8.0) включает программы, реализующие квантово-химические методы расчета «из первых принципов» и полуэмпирические методы, а также методы моделирования в молекулярной механике и молекулярной динамике. Силовые поля,
используемые в HyperChem, — MM+ (на базе MM2), Amber, OPLS и BIO+ (на базе CHARMM). Реализованы полуэмпирические методы: расширенный метод Хюккеля, CNDO, INDO, MINDO/3, MNDO, AM1, PM3, ZINDO/1, ZINDO/S. Возможность расчетов методами ССП МО ЛКАО и по теории возмущений Меллера–Плессе второго порядка. Распространяется на коммерческой основе.

(9) GAMESS (www.msg.ameslab.gov/GAMESS/)

GAMESS (General Atomic and Molecular Electronic Structure System) — некоммерческий квантовохимический пакет, позволяющий проводить расчет молекулярных волновых функций методом самосогласованного поля в приближении RHF, UHF, ROHF, GVB и MCSCF. Основные возможности пакета: учет энергии электронной корреляции на основе теории возмущений, конфигурационного взаимодействия, связанных кластеров и функционала плотности; автоматическая оптимизация геометрии, поиск переходных состояний с использованием аналитических градиентов; вычисление молекулярных свойств, в частности дипольного момента, электростатического потенциала, электронной и спиновой плотности.

(10) Gaussian (www.gaussian.com)

Коммерческий пакет моделирования электронных структур (последняя версия Gaussian 03) используется для исследований в области химии и биохимии, физике и других известных и развивающихся областях, связанных с химическими процессами. Пакет Gaussian на основе методов "из первых принципов" позволяет предсказывать энергии, молекулярные структуры и колебательные частоты молекулярных систем, наряду со многими другими свойствами молекул. Широко реализованы методы учета корреляционной энергии: возможен расчет энергии и оптимизация с аналитическими градиентами для методов теории возмущений, связанных кластеров. конфигурационного взаимодействия, функционала плотности, многоконфигурационного метода самосогласованного поля.

(11) VASP (cms.mpi.univie.ac.at/vasp/)

С помощью пакета VASP (Vienna Ab initio SimulationPackage) проводят квантово-механические расчеты "из первых принципов" в области молекулярной динамики с использованием псевдопотенциалов, метода расчета электронной зонной структуры PAW и базиса плоских волн.

(12) MOPAC (openmopac.net)

Пакет полуэмпирических программ применяется при расчете электронной структуры основного и возбужденных состояний атомов, молекул и твердых тел. В МОРАС реализованы полуэмпирические методы RM1, PM6, MNDO, AM1 и PM3. При исследовании электронной структуры макромолекул (белков, ДНК, полимеров и твердых тел) позволяет рассчитывать большие (до 15 000 атомов) биомолекулы (в том числе ферменты, ДНК и т. д.) на основе использования локализованных молекулярных орбиталей.

APPENDIX IV. Clathrate hydrates and *Si*₄₆-clathrates: the problems of future energetics and MD simulation aspects

В серии МД-вычислений, выполненных в соавторстве со студентами 5-го курса кафедры химии, геохимии и космохимии Университета "Дубна" (выпуск 2009-2010 гг.) Кругловой А.А. и Солодченко Е.А., исследовались вопросы формирования клатратов-гидратов благородных газов. Методом молекулярной динамики (МД) были смоделированы системы клатратов ксенона и метана под высокими давлениями. Например, клатраты ксенона изучались при P=1.0 ГПа, метана при P=0.7 ГПа в условиях комнатной температуры T=300К. Отметим основные мотивации для проведения таких МД-моделирований, которые непосредственно вытекают из исследования проблем энергетики будущего. В условиях истощения природных энергоресурсов (нефти и газа), а также глобального потепления, многие страны присматриваются к новому виду ископаемого топлива. Речь идет о клатрате благородных газов (метана, ксенона, и др.). Клатраты метана (CH_4) – это молекулы метана, заточенные внутри ледяных кристаллов (см. Рис. IVа). Клатраты метана образуются при температуре, близкой к нулю градусов, и давлении около 50 атмосфер - как правило, в толще вечной мерзлоты или под океанским дном на континентальном шельфе, но иногда и прямо на дне моря.

Рис. ІVа. Структура клатрата метана, образующего при высоких давлениях (~[60-80] ГПа).

При сгорании метана выделяется вдвое меньше углекислого газа, чем при сгорании угля, что весьма ценно для предотвращения глобального потепления. Но существует беспокойство, что добыча клатратов чревата непредсказуемыми и гибельными последствиями. Клатраты (гидраты газов) могут образоваться тогда, когда вода принимает кристаллическое строение, отличное от кристаллического строения льда – атомы водорода и кислорода образуют «клетки», которые могут захватывать молекулы гостей, например, метана. На основе компьютерного моделирования можно предсказать особенности нуклеации и роста гидратов метана в первые микросекунды образования. Результаты показывают весьма интересное поведение метана, проявляющееся при образовании первых зародышей клатратов. Самоорганизация молекул воды приводит к тому, что пять молекул воды образуют устойчивый цикл, метан связывается с молекулами воды, расположенными в противоположных концах цикла. Затем система организуется с образованием клеток небольшого размера, каждая из которых состоит из 12 пятиугольников и содержит молекулу метана в центре. Эти первичные клетки, в свою очередь, образуют кристаллы клатратов.

Некоторые экспериментальные результаты (см. также Рис. IVб фазовой диаграммы объема от давления для клатрата ксенона (*Xe*)):

- Проделанные эксперименты над гидратом ксенона показали, что он стабилен при давлении 1.8 ГПа (E. D. Sloan, Jr., *Clathrate Hydrates of Natural Gases*, 1998);
- В случае с гидратом ксенона были заполнены ячейки 46 молекулами *H*₂*O* и 8 гостевыми молекулами.
- При комнатной температуре возрастала начальная кристаллизация смеси *Xe* + *H*₂*O* под высоким давлением 0.7-0.8 ГПа.

Рис. ІVб. Фазовая диаграмма зависимости среднего молекулярного объема от давления для клатрата ксенона.

Результаты МД-моделирования четко предсказывают динамику формирования клатратов под высокими давлениями. На Рис.IV(в-г) представлены начальная и конечная конфигурации молекулярной системы клатрата ксенон + вода. Конечная конфигурация (г) показывает образование «гостевых» атомов в присутствии «хозяина» воды под высоким давлением (1 ГПа).

Рис. IV(в-г). Начальная (в) и конечная (г) конфигурации молекулярной системы клатрата $Xe + H_2O$.

В последние годы особый исследовательский интерес связан с вопросами формирования клатратов на основе Si₄₆ (Рис.IV(д-е)).

Рис. IV(д-е). Кристаллическая ячейка типа алмаз (*diamond structure*) для Si₄₆ ((д): вид сбоку, (е): вид сверху).

Структурные особенности Si₄₆-клатратов являются таковыми, что они также могут в условиях высокого давления "поместить внутри себя" некоторые виды гостевых атомов или молекул, наподобие указанных выше клатратов гидратов – кластер из молекул воды с молекулой "гостя"

(метана и т.п). Для проведения МД-моделирования Si_{46} -клатратов ниже разработан компьютерный код, по которому можно генерировать различные ячейки Si_{46} -клатратов. Результаты вычисления по данному коду (см. Таб.IVa) проиллюстрированы на примере генерации двух-, трех-, четырех- и пяти Si_{46} -ячеек с помощью Рис. IV(ё-и), а само описание компьютерного кода дано ниже в Таб.IVa.

Рис. IV(ё-и). *Si*₄₆-клатраты для (ё) двух-, (ж) трех-, (3) четырех-, (и) пяти-ячеек.

Если по структуре 1-ой ячейки Si_{46} -клатрата (см. выше Рис.6(д-е)) не вполне очевидно существование полости ("каверны"), то с помощью Рис.6(ё-и) мы четко можем видеть формирование таких полостей при наложении нескольких ячеек. Число полостей ("каверн") растет с увеличением количества Si_{46} . Наличие полостей в структуре Si_{46} -клатратов будет означать возможности размещения там огромного количества гостевых молекул. Si_{46} -клатраты, таким образом, поступают наподобие клатратов в качестве "хранилища" для тех или иных молекул, представляющих энергетический интерес.

Далее, на Таблице IVa представлена подпрограмма для генерации структуры Si₄₆-клатратов в форматах "*pdb*" и "*dlpoly*". Два формата – формат кода *DL_POLY* (файл *CONFIG*) и формат *PDB* ("*Protein Data Bank*"–"Базы Данных Белков") – это два способа представления входных и выходных данных, наиболее употребляемых в современном МД-моделировании.

сгенерация структуры Si ₄₆ -клатратов в форматах "pdb" и "dlpoly"					
12345x789					
с	-subroutine for generation of Si46-clathrate diamond s	tructure			
	dimension x0(46),y0(46),z0(46)	Line	1		
	character*32 input,output	Line	2		
	character*8 atmnam,atmn1,Si	Line	3		
	character*4 ATOM	Line	4		
	ATOM="ATOM"	Line	5		
	atmnam="Si"	Line	6		
C			_		
	input='si46_fractional.pdb'	Line	./		
	open (unit=9,file=input,status='old')	Line	8		
	output='CONFIG'	Line	9		
_	open (unit=11,111e=output,form='formatted')	Line	10		
C					
20	write(^,20)	Line	10		
20	read(t l(i6)l) meall	Line	12		
	reau(^, (10)))ncerr	Line	11		
	white $(", ")$ Lattice constant (A) :	Line	15		
~ 	-ncell=1	ntue	тJ		
C	-ICCII-I -aI=10_27				
C	alv=ncell*al	Tine	16		
	alv=ncell*al	Line	17		
	alz=ncell*al	Line	18		
	write(11.*) 'Si46 Structure'	Line	19		
	write $(11, ')$ 5140 Sciuccule	Line	20		
	write $(11, (2110), (0, 0)$	Line	21		
	write(11, '(3f20,10)') 0d0,aLv,0d0	Line	22		
	write(11,'(3f20.10)') 0d0,0d0,aLz	Line	23		
C	_				
-	do i=1,46	Line	24		
	ii=i	Line	25		
	read(9,'(a4,1X,i6,1X,a4,1X,a4,1X,i8,3f8.3)')ATOM,i1,	Line	26		
1	x atmnam,atmn1,i2,x0(ii),y0(ii),z0(ii)	Line	27		
	enddo	Line	28		
с	-				
	ijk=0	Line	29		
	do n=1,46	Line	30		
	x=x0(n)*aL	Line	31		
	y=y0(n)*aL	Line	32		
	z=z0(n)*aL	Line	33		
	do i=1,ncell	Line	34		
	do j=1,ncell	Line	35		
	do k=1,ncell	Line	36		
	xxx=x-0.5*aLx+0.5*aL	Line	37		
	yyy=y-0.5*aLy+0.5*aL	Line	38		
	zzz=z-0.5*aLz+0.5*aL	Line	39		
C	-writing diamond Si46-structure in DL_POLY-format "CON	F'IG"	4.0		
	1 K = 1 K + 1	Line	40		
	write (II, $(a\delta, IIU)$) atmnam, IJK	Line	4⊥ 4 0		
~	write(II,'(3g2U.IU)') xxx,yyy,zzz	Line	42		
C		т і	12		
		Line	43 11		
		inc	44 15		
	2 - 20 (11) all $y = y + aT$.	Lino	ч.) 46		
	y y · u · u	птис	- U		

Таблица. IVа. Генерация структуры *Si*₄₆-клатратов в форматах "*pdb*" и "*dlpoly*"

	enddo	Line	47		
	z=z0(n)*aL	Line	48		
	y=y0(n)*aL	Line	49		
	x=x+aL	Line	50		
	enddo	Line	51		
	enddo	Line	52		
C					
	stop	Line	53		
	end	Line	54		

Line 1: ввод размерности массивов для хранения 3-мерных координат *Si*₄₆-клатрата.

Line 2 – Line 6: описания имен атомов для двух-форматной записи ("*pdb*" и "*dlpoly*").

Line 7 – Line 10: открытие двух файлов – для чтения и записи данных. Исходные координаты ячейки Si_{46} -клатрата читаются из базы данных в формате "*pdb*", а выходные данные представляются в формате "*dlpoly*" (т.е. создается файл "*CONFIG*" по коду многоцелевого назначения *DL_POLY* для МД-моделирования).

Line 11 – Line 15: запрос кода для генерации нужного количества Si_{46} -ячеек. Ввод константы Si_{46} -решетки в ангстремах (*Lattice constant*, L=10.27Å). Для генерации двух Si_{46} -ячеек *ncell=2*, трех ячеек *ncell=3* и т.д.

Line 16 – Line 18: вычисление размеров исходной молекулярной системы (*L_x*, *L_y*, *L_z*).

Line 19: название файла "CONFIG".

Line 20: число "0" означает, что в файле "*CONFIG*" имеются только координаты атомов; число"3" означает геометрию системы – тип периодических граничных условий (в данном случае, параллелепипед).

Line 21 – Line 23: запись размеров молекулярной системы (L_x , L_y , L_z).

Line 24 – Line 28: цикл "do" чтения координат 46-ти атомов Si₄₆-клатрата в формате "pdb" (PDB "Protein Data Bank" – "Базы Данных Белков").

Line 29: начало генерации конфигурации системы; репликация *Si*₄₆-ячейки по всем пространственным направлениям *ncell*-количество раз.

Line 30 – Line 33: чтение дробных (фракционных) координат *Si*₄₆-ячейки и их перевод в пространственные.

Line 34 – Line 36: репликация *Si*₄₆-ячейки по всем пространственным направлениям *ncell*-количество раз.

Line 37 – **Line 39**: перевод координат от представления $[0, L_{x,y,z}]$ в $[-L_{x,y,z}/2, +L_{x,y,z}/2]$, то есть здесь учтена особенность записи координат атомов в формате DL_POLY ("CONFIG").

Line 40 – Line 42: запись координат атомов в файле "CONFIG".

Line 43 – Line 52: заполнение координат атомов в выбранной конфигурации системы; репликация *Si*₄₆-ячейки по пространственным направлениям (x, y, z).

Line 53 – Line 54: остановка и окончание работы программы.

ПРИЛОЖЕНИЕ V.

Формы контроля и примерная тематика исследовательских проектов.

Перечень примерных контрольных вопросов:

- 1. Основные уравнения и потенциалы метода МД.
- 2. Что такое силовое поле в МД моделировании?
- 3. Основные понятия ОС Линокс.
- 4. Команды в CONTROL, CONFIG, FIELD.
- 5. Что такое точность результатов анализа?
- 6. Какова формула RMSD?
- 7. Дисперсия выборки.
- 8. Применение метода отжига (simulated annealing).
- 9. Относительное стандартное отклонение.
- 10. Команды пакета VMD для визуализации данных.
- 11. Функция радиального распределения.

Перечень вопросов, выносимых на зачетах или экзаменах:

- 1. Основные понятия МД анализа.
- 2. Диффузионные параметры.
- 3. Потенциал Леннарда-Джонса.
- 4. Оценка химических связей молекул.
- 5. Статистика МД результатов и методы оценки.
- 6. Методы расчета кулоновских сил и потенциалов.
- 7. Структурные параметры и функции.
- 8. Метод среднеквадратичных отклонений.
- 9. Классификация силовых полей.
- 10. Расчеты динамических уравнений.
- 11. Визуализация химических структур.

Примерная тематика расчетно-исследовательских проектов:

- МД анализ процессов переноса ионов в клетках и биологических системах.
- МД расчет клатратов гидратов благородных газов под высокими давлениями.
- Обработка результатов эксперимента при помощи VMD (visual molecular dynamics).
- МД расчет полимерных и пептидных цепей.